Ion Diffusion Selectivity in Lecithin-Water Lamellar Phases
نویسندگان
چکیده
The diffusion coefficients of Na(+), Rb(+), and cl(-) were determined in lecithin-water lamellar phases at 18 degrees C as a function of phase hydration. Diffusion was measured within the phase with no transfer between phase and bulk aqueous medium. The relative diffusion coefficients of anion and cation depended strongly on phase hydration. At low water content, the diffusion coefficient of Cl(-) was greater than that of Na(+) or Rb(+) whereas at high water content both cations diffused faster than the anion. The change in relative diffusion coefficient occurred at 0.24 g water/g phase (24% water). The possibility that a change in conformation of the lecithin polar head occurs at a phase water content of 24% is considered. The diffusion coefficients of all three ions decreased at the water content where the relative diffusion rates inverted. Freeze fracture and polarizing microscopy studies were carried out to obtain information on phase structure. The latter study indicated that a change in long-range organization of the phase occured at 24% water. This change accounts for the decrease in the ion diffusion coefficients at this water content. The change in conformation of the choline phosphate group proposed as an explanation for the change in ion selectivity could lead to changes in long-range organization of the phase as a second order-effect.
منابع مشابه
Intrinsic high water/ion selectivity of graphene oxide lamellar membranes in concentration gradient-driven diffusion.
Although graphene oxide lamellar membranes (GOLMs) are effective in blocking large organic molecules and nanoparticles for nanofiltration and ultrafiltration, water desalination with GOLM is challenging, with seriously controversial results. Here, a combined experimental and molecular dynamics simulation study shows that intrinsic high water/ion selectivity of GOLM was achieved in concentration...
متن کاملPhase equilibria and structure of dry and hydrated egg lecithin.
The behavior of purified egg lecithin in water has been investigated in relation to the quantity of water present and the temperature. The complete binary phase diagram of egg lecithin-water is presented as well as X-ray diffraction data on selected mixtures. Dry egg lecithin is present in at least partially crystalline form until about 40 degrees C. Above this temperature it forms a "wax-like"...
متن کاملStructure and phase equilibria of the soybean lecithin/PEG 40 monostearate/water system.
PEG stearates are extensively used as emulsifiers in many lipid-based formulations. However, the scheme of the principles of the lipid-surfactant polymer interactions are still poorly understood and need more studies. A new phase diagram of a lecithin/PEG 40 monostearate/water system at 30 °C is reported. First, we have characterized the binary PEG 40 monostearate/water system by the determinat...
متن کاملAn NMR study of translational diffusion and structural anisotropy in magnetically alignable nonionic surfactant mesophases.
The diffusion of both water and surfactant components in aqueous solutions of the nonionic surfactant "C12E6"--which includes hexagonal, cubic, lamellar, and micellar mesophases--has been studied by pulsed-field-gradient NMR. Diffusion coefficients were measured in unaligned samples in all of these phases. They were also obtained in the hexagonal and lamellar phases in oriented monodomain sampl...
متن کاملPhase behavior and structure of aqueous dispersions of sphingomyelin.
The phase behavior of bovine brain sphingomyelin in water has been determined by polarizing light microscopy, differential scanning calorimetry, and X-ray diffraction. Lamellar phases, in which water is intercalated between sheets of lipid molecules arranged in the classical bilayer fashion, are present over much of the phase diagram. An order-disorder transition separates the high temperature,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 63 شماره
صفحات -
تاریخ انتشار 1974